

GCE Edexcel GCE Statistics S2 (6684)

June 2006

Mark Scheme (Results) advancing learning, changing lives

J une 6684 Statistics S2 Mark Scheme

Question Number	Scheme		Marks	
1.(a)	Saves time / cheaper / easierany oneor <u>A census/asking all members</u> takes a long time or is expensive or difficult to carry out	B1	(1)	
(b)	List, register or database of all club members/golfers or Full membership list	B1	(1)	
(c)	Club <u>member(s)</u>	B1	(1)	
2.(a)	P(L < -2.6) = $1.4 \times \frac{1}{8} = \frac{7}{40}$ or 0.175 or equivalent	B1	(1)	
(b)	P (L < -3.0 or L > 3.0) = $2 \times \left(1 \times \frac{1}{8}\right) = \frac{1}{4}$ M1 for 1/8 seen	M1;A1	(2)	
(c)	P (within 3mm) = $1 - \frac{1}{4} = 0.75$ B(20,0.75) recognises binomial Using B(20,p) Let X represent number of rods within 3mm	B1 M1		
	$P(X \le 9/p = 0.25)$ or $1 - P(X \le 10/p = 0.75)$	M1		
	= 0.9861 awrt 0.9861	A1	(4)	

edexcel

PMT

Question Number	Scheme		Marks	
3.	Let X represent the number of properties sold in a week			
a)	$\therefore X \sim P_{o}(7)$	must be in part a	B 1	
	Sales occur independently/randomly, singly, at a constant rate	context needed once	B1 B1	(2)
b)	P (X = 5) = P(X \le 5) - P(X \le 4) or $\frac{7^5 e^{-7}}{5!}$		M 1	(3)
	= 0.3007 - 0.1730 = 0.1277	awrt 0.128	A1	(2)
c)	P (X > 181) ≈ P (Y ≥ 181.5) where Y ~N (168, 168)	N (168, 168)	B 1	(2)
	$= P\left(z \ge \frac{181.5 - 168}{\sqrt{168}}\right)$	\pm 0.5 stand with μ and σ	M1 M1	
	Give A1 for 1.04 = $P(z \ge 1.04)$	or correct expression	A1	
	= 1 - 0.8508	attempt correct area $1-p$ where $p > 0.5$	M 1	
	= 0.1492	awrt 0.149	A1	(6)
	tatistics S4 Advanced Subsidiary/Advanced Level in GCF Mathematics			

Question Number	Scheme		
4.	Let X represent the number of breakdowns in a week.		
a)	$X \sim P_o (1.25)$ implied	B1	
	P ($X < 3$) = P (0) + P(1) + P(2) or P ($X \le 2$)	M1	
	$= e^{-1.25} \left(1 + 1.25 + \frac{(1.25)^2}{2!} \right)$	A1	
	= 0.868467 awrt 0.868 or 0.8685	(4)	
b)	$H_0: \lambda = 1.25; H_1: \lambda \neq 1.25 \qquad (\text{ or } H_0: \lambda = 5; H_1: \lambda \neq 5) \qquad \lambda \text{ or } \mu$	B1 B1	
	Let <i>Y</i> represent the number of breakdowns in 4 weeks		
	Under H ₀ , $Y \sim P_0(5)$ may be implied	B1	
	$P(Y \ge 11) = 1 - P(Y \le 10)$ or $P(X \ge 11) = 0.0137$ One needed for N	M1	
	$P(X \ge 10) = 0.0318$		
	$= 0.0137$ CR $X \ge 11$	A1	
	$0.0137 < 0.025, 0.0274 < 0.05, 0.9863 > 0.975, 0.9726 > 0.95 \text{ or } 11 \ge 11$ any .allow %		
	Evidence that the rate of breakdowns has changed /decreased $\sqrt{from H_1}$ From their p		

Question Scheme Marks Number 5. (a) **Binomial B**1 (1)Let *X* represent the number of green mugs in a sample (b) X~B(10,0.06) may be implied or **B**1 seen in part a $P(X=3) = {}^{10}C_3(0.06)^3(0.94)^7$ ${}^{10}C_3(p)^3(1-p)^7$ **M**1 = 0.016808.... awrt 0.0168 A1 (3)(C) Let X represent number of green mugs in a sample of size 125 (i) $X \sim P_0(125 \times 0.06 = 7.5)$ may be implied **B**1 $P(10 \le X \le 13) = P(X \le 13) - P(X \le 9)$ **M**1 = 0.9784 - 0.7764= 0.2020A1 awrt 0.202 (3)(ii) $P(10 \le X \le 13) \approx P(9.5 \le Y \le 13.5)$ where $Y \sqcup N(7.5, 7.05)$ **B**1 7.05 9.5, 13.5 **B**1 $= P\left(\frac{9.5 - 7.5}{\sqrt{7.05}} \le z \le \frac{13.5 - 7.5}{\sqrt{7.05}}\right)$ **M**1 ± 0.5 **M**1 stand. both values or both correct expressions. $= P(0.75 \le z \le 2.26)$ awrt 0.75 and 2.26 A1 = 0.2147awrt 0.214or 0.215 A1 (6)

Question Number	Scheme			Marks	
6a)	$\int_{1}^{4} \frac{l+x}{k} dx = 1$	$\int f(x) = 1$ Area = 1	M1		
	$\therefore \left[\frac{x}{k} + \frac{x^2}{2k}\right]_1^4 = 1$	correct integral/correct expression	A1		
	$k = \frac{21}{2} *$	CSO	A1	(3)	
(b)	$P(X \le x_0) = \int_1^{x_0} \frac{2}{21} (1+x)$	$\int f(x)$ variable limit or +C	M1		
	$= \left[\frac{2x}{21} + \frac{x^2}{21}\right]_1^{x_0}$	correct integral + limit of 1	A1		
	$=\frac{2x_0 + {x_0}^2 - 3}{21} \text{ or } \frac{(3+x)(x-1)}{21}$	May have <i>k</i> in	A1		
	$F(x) = \begin{cases} 0, & x < 1 \\ \frac{x^2 + 2x - 3}{21} & 1 \le x < 4 \\ 1 & x \ge 4 \end{cases}$	middle; ends	B1√; B1	(5)	
(c)	$E(X) = \int_{1}^{4} \frac{2x}{21} (1+x) dx$	valid attempt $\int x f(x)$	M1	(-)	
	$= \left[\frac{x^2}{21} + \frac{2x^3}{63}\right]_{1}^{4}$	x^2 and x^3 correct integration	A1		
	$=\frac{171}{63}=2\frac{5}{7}=\frac{19}{7}=2.7142$	awrt 2.71	A1	(3)	

6684/01 Statistics S4 June 200 Advanced Subsidiary/Advanced Level in GCE Mathematics

Question Number	Scheme		
(d)	$F(m) = 0.5 \implies \frac{x^2 + 2x - 3}{21} = \frac{1}{2}$ putting their F(x)) = 0.5 M1	
	$\therefore 2x^2 + 4x - 27 = 0 \text{or equiv}$		
	$\therefore x = \frac{-4 \pm \sqrt{16 - 4.2(-27)}}{4}$ attempt their 3 term quaties $x = -1 \pm 3.8078$	adratic M1	
	i.e. $x = 2.8078$ awrt 2	2.81 A1	(3)
e) f)	Mode = 4 <u>Mean < median < mode</u> (\Rightarrow negative skew) allow num	B1 nbers B1	(1)
''	$\frac{Mean < median}{Mean < median} \xrightarrow{(a)} (a) (b) (c) (c) (c) (c) (c) (c) (c) (c) (c) (c$		(1)
	w diagram but line must not cross y	v axis	

Question Number	Scheme		Marks	
7.a)	Let <i>X</i> represent the number of bowls with	minor defects.		
	$\therefore X \sim B;(25, 0.20)$	may be implied	B1; B1	
	P $(X \le 1) = 0.0274$ or P(X=0) =0.0	need to see at least one. prob for $X \le no$ For M1	M1A1	
	$P(X \le 9) = 0.9827; \Longrightarrow P(X \ge 10) = 0.017$	73 either	A1	
	$\therefore \operatorname{CR} \text{ is } \{X \le 1 \cup X \ge 10\}$		A1	
b)	Significance level = $0.0274 + 0.0173$			(6)
	= 0.0447 or 4.477%	awrt 0.0447	B 1	(1)
c)	$H_0: p = 0.20; H_1: p < 0.20;$		B1 B1	(1)
	Let <i>Y</i> represent number of bowls with min	nor defects		
	Under H ₀ $Y \sim B$ (20, 0.20)	may be implied	B1	
	P ($Y \le 2$) or P($Y \le 2$) P($Y \le 1$)=		M1	
	= 0.2061 CR Y =		A1	
	0.2061 > 0.10 or $0.7939 < 0.9$ or $2 > 0.2061 > 0.10$	their p	M1	
	Insufficient evidence to suggest that the proportion of defective bowls has decreased.		B 1√	(7)
l				